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ARTICLE

Haplotype-Based Association Analysis via Variance-Components
Score Test
Jung-Ying Tzeng and Daowen Zhang

Haplotypes provide a more informative format of polymorphisms for genetic association analysis than do individual
single-nucleotide polymorphisms. However, the practical efficacy of haplotype-based association analysis is challenged
by a trade-off between the benefits of modeling abundant variation and the cost of the extra degrees of freedom. To
reduce the degrees of freedom, several strategies have been considered in the literature. They include (1) clustering
evolutionarily close haplotypes, (2) modeling the level of haplotype sharing, and (3) smoothing haplotype effects by
introducing a correlation structure for haplotype effects and studying the variance components (VC) for association.
Although the first two strategies enjoy a fair extent of power gain, empirical evidence showed that VC methods may
exhibit only similar or less power than the standard haplotype regression method, even in cases of many haplotypes.
In this study, we report possible reasons that cause the underpowered phenomenon and show how the power of the
VC strategy can be improved. We construct a score test based on the restricted maximum likelihood or the marginal
likelihood function of the VC and identify its nontypical limiting distribution. Through simulation, we demonstrate the
validity of the test and investigate the power performance of the VC approach and that of the standard haplotype
regression approach. With suitable choices for the correlation structure, the proposed method can be directly applied to
unphased genotypic data. Our method is applicable to a wide-ranging class of models and is computationally efficient
and easy to implement. The broad coverage and the fast and easy implementation of this method make the VC strategy
an effective tool for haplotype analysis, even in modern genomewide association studies.
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Haplotypes of multiple SNPs are considered a more in-
formative format of polymorphisms for genetic associa-
tion analysis than single SNPs.1 Haplotypes are more in-
formative because they preserve the joint linkage dis-
equilibrium (LD) structure among multiple adjacent
markers.2 Even when only tag SNPs are used, haplotypes
serve as a proxy for unobserved SNPs and increase the
predictive power for the genomic variation.3,4 However, in
terms of practical efficacy, the power of haplotype-based
association analysis is challenged by a trade-off between
the benefits of modeling abundant variation and the cost
of the extra degrees of freedom for modeling the multi-
marker variations. To avoid the curse of dimensionality
encountered in haplotype association analysis, various
strategies have been proposed in the literature. They in-
clude (1) clustering evolutionarily close haplotypes,5–8 (2)
modeling the level of haplotype sharing instead of the
haplotypes themselves,9–11 and (3) smoothing haplotype
effects by introducing a correlation structure for the effects
of similar haplotypes.12–14 Although these strategies appear
to be different, the fundamental principle is to use the
evolutionary history of haplotypes to reduce the param-
eter space from individual haplotypes to haplotypes with
similar ancestry. However, although the approaches of
haplotype clustering and haplotype sharing enjoy a fair
amount of power gain, empirical studies found that the
smoothing approach may exhibit only similar or less

power than the standard methods that regress trait values
on haplotypes and impose no assumptions on haplotypes,
even when there are many haplotypes.14

In haplotype smoothing, a dependence structure is in-
troduced to the effects of different haplotypes, according
to the similarity between haplotypes, under a Bayesian
hierarchical model or a mixed-model framework, and the
overall gene-trait association can be studied via the vari-
ance components (VC).12–14 The idea of correlating hap-
lotype effect is based on the assumption that the present
mutation-bearing haplotypes have descended from a
small number of ancestral haplotypes, and, as a result, the
disease haplotypes tend to be correlated because of this
shared ancestry. Without losing generality, in this work,
we refer to these methods as “VC” approaches and discuss
them under a mixed-model framework. We also refer to
the standard haplotype regression method as a “fixed-ef-
fect” approach. Schaid14 first noted the underpowered
phenomenon of the VC method, using the likelihood-
ratio test (LRT), and explored potential reasons based on
the noncentrality (NC) parameter of the distribution of
the LRT statistics. The NC parameter reflects the distance
between the alternative distribution and the null distri-
bution of the test statistics, and the larger the null-to-
alternative distance is, the higher the power a test pos-
sesses. By expressing the NC parameter as a function of
heritability ( ), it can be seen that, although the NC2h
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parameter of a fixed-effect model is proportional to
, the NC parameter of a VC model is much2 2h / (1 � h )

smaller (proportional to ). As a result, the power gain4h
brought by the low degrees of freedom can be compro-
mised with the small NC parameter in a VC-LRT approach.

Here, we report other key factors that contribute to this
underpowered phenomenon. In brief, unlike the usual VC
model in which the VC represents the potential variability
from a source that is independently distributed in the pop-
ulation (e.g., the family effect in the study of linkage or
familial aggregation), in the population-based haplotype
analysis, the source of variability is not independent. That
is, the design matrix of the random haplotype effect does
not have a diagonal or block-diagonal structure. Further-
more, the dimension of the random haplotype effect is
fixed. Therefore, the data under the alternative hypothesis
cannot be represented as a collection of independent data
vectors. As a result, the distribution of the LRT statistic
does not converge to the conventional mixture of50:50

and (i.e., the limiting distribution predicted by the2 2x x0 1

usual asymptotic theory15). Instead, empirical evidence
indicates that the distribution of VC-LRT statistics has
higher weighting of . Hence, the threshold value ob-2x0

tained from the 50:50 x2 mixture is overstringent and
causes a too-conservative testing result. Such overconser-
vative findings of the LRT was obtained also by Craini-
ceanu and Ruppert16 in certain linear mixed models.

To overcome the problem of a lack of independence
and also to generalize the VC approach to all types of
trait values, we propose a score test under the generalized
linear mixed-model (GLMM) framework. Specifically, we
construct a score statistic based on the restricted maxi-
mum likelihood (REML) or the marginal likelihood func-
tion of the VC and identify its nontypical asymptotic
distribution. The proposed test is easy to implement and
computationally efficient yet is general enough to accom-
modate a broad class of phenotypes and correlation struc-
tures. It allows for covariate information and can be used
for phase-unknown genotypic data. Through simulation,
we demonstrate the validity of the test and investigate the
power performance of the VC approach and the fixed-
effect approach under general scenarios. We also apply the
proposed method to a case-control data set from a ge-
nomewide association study of amyotrophic lateral scle-
rosis (ALS) conducted by Schymick et al.17 In the analysis,
we test for gene-trait association on chromosome 10 with
the 275 ALS cases and 271 controls and examine statistical
significance at the genomewide level. We verify the find-
ings from the proposed method by comparing them with
the results reported by Schymick et al.17

Material and Methods
VC Method for Association Analysis

We denote the data with the following notations. For individual
i we have trait value , environmental covariates(i p 1,2, … ,n), Yi

(a vector including the intercept term), and haplotypeX K # 1i

(an vector, where L is the number of distinct haplotypesH L # 1i

observed in the population). Vector records individual i’s hap-Hi

lotype pair via a certain scoring rule, such as by setting its hth
element as the number of haplotype h that individual i carries.
Throughout this article, we treat explanatory variables (e.g., Xi

and ) as constants and will omit them in the lists of the con-Hi

ditional variables. This means that, for example, we will use
instead of .Var (Y ) Var (Y dX ,H )i i i i

Assume that the trait value follows some distributionYi

with conditional mean and conditional varianceE(Y db) p mi i

, where is a known prior weight (e.g.,�1Var (Y db) p m fv (m ) mi i i i

binomial denominator), f is the dispersion parameter (e.g., mea-
surement-error variance for a normal quantitative trait), and

is the variance function. Then, the VC model can be ex-v (m )i
pressed under the framework of GLMM as

T Tg(m ) p X g � H bi i i

b ∼ MN(0,tR ) , (1)b

where is a link function that connects the conditional meang(7)
and the explanatory variables, represents the fixed effectm gi K#1

of environmental covariates, and is the random effect ofbL#1

haplotypes. The haplotype effect is assumed to have a multivar-
iate normal (MN) prior. With model (1), the marginal phenotypic
variance, can be partitioned into genetic componentsVar (Y ),i

and environment components, and the association between hap-
lotypes and traits can be detected by testing for zero genetic VC
(i.e., ). Intuitively, implies that all share the samet p 0 t p 0 bh

value, and this is essentially the null hypothesis of the standard
fixed-effect approaches.

The correlation structure of is specified through theb L # Lh

matrix . Here, we consider a general formulation for by let-R Rb b

ting its element, denoted by , depend on the similarity(h,k) rhk

level between haplotypes h and k, which is quantified by a certain
similarity metric, . One simple choice of the correlations(h,k)
structure is to let , where I is the identity matrix. This in-R p Ib

dependence structure imposes no correlation among distinct hap-
lotypes and reflects the “unstructured” variation among haplo-
types. The independence prior may be reasonable if haplotype
variants were created mainly by recombinations instead of mu-
tations. In contrast, one can introduce local-dependence struc-
tures to account for the role of mutation and to reflect the con-
jecture that evolutionarily close haplotypes tend to have similar
effects on traits. One convenient choice of such is the con-Rb

ditional autoregressive (CAR) structure. The CAR structure as-
sumes that all are correlated but that the correlation diminishesbh

as the haplotype similarity decays. With our representation, a
CAR structure is to let , where has diagonal elements�1R p C Cb

equal to 1 and off-diagonal elements equal to .18 Alter-�s(h,k)
natively, to avoid choosing between an independence prior and
a sole CAR prior, an intermediate option, in practice, is the con-
volution model that combines the two: .12,13 In thistR p t I � t Cb 1 2

work, we focus on the model that was considered by Schaid14 and
set , with . This model uses the haplo-r p s (h,k) 0 � s(h,k) � 1hk

type similarity to reflect the correlation directly. It is more ex-
treme but uses a simpler concept than the convolution model,
by compromising between the dependence and the indepen-
dence priors. It allows for correlation induced from partially sim-
ilar haplotypes but assumes independence among haplotypes
that share zero similarity.
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Figure 1. The 10 largest eigenvalues of matrix .�1/2 �1/2W P SP W0 0

The eigenvalues are dominated by the first few and decrease rapidly
to 0. The eigenvalues are averages across the 1,000 replications
in the simulation scenario of high haplotype diversity and an allele
frequency of 0.1 for binary traits.

Table 1. Type I Error Rates of the VC-Score Test
for Quantitative Traits

Haplotype
Diversity
and Allele
Frequency q

Disease SNP Tagged Disease SNP Not Tagged

a p .05 a p .01 a p .05 a p .01

High:
q p .1 .056 .015 .049 .010
q p .3 .047 .011 .047 .012
q p .5 .050 .010 .054 .012

Moderate:
q p .1 .050 .015 .056 .010
q p .3 .048 .012 .044 .008
q p .5 .052 .012 .050 .012

Low:
q p .1 .046 .012 .046 .009
q p .3 .047 .011 .054 .012
q p .5 .046 .013 .052 .012

NOTE.—The results are based on 2,000 replications.

VC-Score Test for Haplotype-Phenotype Association

To motivate our VC-score test for haplotype-phenotype associa-
tion, we illustrate the method, assuming a normally distributed
trait (perhaps after some transformation, such as the logarithm
transformation) with a known dispersion parameter, f. We then
present the VC-score test for general scenarios of unknown f and
trait values with an arbitrary distribution. We provide the deri-
vation of the generalization in appendixes A and B.

Quantitative traits with known dispersion parameter f.—For quan-
titative traits that follow a normal distribution directly or after
appropriate transformations, model (1) reduces to a linear mixed-
model in matrix notation:

Y p Xg � Hb � e , (2)

where X is the design matrix for , whose ith row is ; H is theTg Xi

design matrix for , whose ith row is ; is theTb H b ∼ MN(0,tR )i b

same as described in model (1); and represents thee ∼ N(0,fI)
uncertainty in measuring traits Y. Since our primary interest is to
test , we consider the REML log-likelihood function ofH :t p 00

VC . It is well known that the REML estimating equation for(t,f)
is unbiased and will produce less biased estimates compared(t,f)

with the maximum-likelihood approach.19

Denote by the REML log-likelihood function of t� (t,f;Y)REML

and f, which is given by

� (t,f;Y) pREML

1 1 1T �1 T� logFVF � logFX V XF � Y PY , (3)
2 2 2

where is the marginal variance of YTV p tHR H � fI { tS � fIb

and where is the projection ma-�1 �1 T �1 �1 T �1P p V � V X(X V X) X V
trix for the linear mixed model (2). The REML log-likelihoodfunc-
tion (3) can also be viewed as the marginal log-likelihood of

from the Bayesian perspective obtained by specifying a flat(t,f)
prior for g and integrating out g from .f(Y;g,t,f)

Simple algebra20 shows that the score statistic of t evaluated
under on the basis of the REML function (3) is equal toH0

�� (t,f) 1REML T{ }U p p Y P SP Y � tr(P S) , (4)t 0 0 0F�t 2tp0

where is the projection matrix�1 T �1 T �1P p f {I � X(X X) X } p f Q0

P evaluated under and where . ItT �1 TH :t p 0 Q p I � X(X X) X0

is immediately seen from equation (4) that underE(U ) p 0t

, and, when , which is a2H :t p 0 t 1 0 E(U ) p t 7 tr(QSQS)/(2f ),0 t

strictly increasing function of t unless . Therefore, largerQS p 0
values of provide stronger evidence against . This suggestsU Ht 0

that the testing procedure for using should be oneH :t p 0 U0 t

sided.

In a situation where the VC t represents the potential vari-
ability due to a source that is independently distributed in the
population such as the subject-specific effects in a longitudinal
study, the score statistic given in equation (4) underU H :t pt 0

has an asymptotic normal distribution with zero mean and0
some variance when the number of independent clusters goes to
infinity.21 However, this condition does not satisfy in our case.
In model (1), the design matrix H for the random effects b is not
block diagonal and the dimension of b is fixed. Hence, the Lin’s21

asymptotic result does not directly apply to .Ut

Since f is known, the second term in is a constant. ThereforeUt

using the score statistic is equivalent to using the first term ofUt

(denoted by ):U Tt t

1 1T TT p Y P SP Y p Y QSQY . (5)t 0 0 22 2f

We show in appendix A that has the same distribution as theTt

weighted x2 random variables , where ’s are indepen-c 2 2� l x xi 1,i 1,iip1

dent x2 random variables with 1 df, and is the ordered non-li

zero eigenvalues of the semipositive definite matrix QSQ/ (2f)
with ( ). If the th quantile of this…l � l � � l 1 0 c � L (1 � a)1 2 c

weighted x2 distribution is denoted by , then a level a scoreT(a)

test will reject if .H T � T0 t (a)

General traits with unknown dispersion parameter f.—Here, we pre-
sent the VC-score test for the general case in which the traits may
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Table 2. Type I Error Rates of the VC-Score Test
for Binary Traits

Haplotype
Diversity
and Allele
Frequency q

Disease SNP Tagged Disease SNP Not Tagged

a p .05 a p .01 a p .05 a p .01

High:
q p .1 .040 .007 .050 .014
q p .3 .050 .014 .043 .008
q p .5 .060 .014 .051 .010

Moderate:
q p .1 .050 .014 .041 .009
q p .3 .046 .014 .056 .016
q p .5 .046 .012 .046 .008

Low:
q p .1 .052 .010 .050 .013
q p .3 .052 .010 .050 .013
q p .5 .057 .014 .041 .009

NOTE.—The results are based on 2,000 replications.

Figure 2. QQ-plots of the test statistic . We defined the standardized as and the scaled as , where is�T T (T � E ) / V T T /b bt t t,i i i t,i t,i i i

the scale parameter of the Gamma approximation. The left panels show the standardized against the expected quantiles fromTt

Normal(0,1). The right panels show the scaled against the expected quantiles from the Gamma( ,1). The upper panels are for—T at

quantitative traits, and the lower panels are for binary traits. These QQ-plots suggest that, for both trait types, values deviate fromTt

the normal distribution, as predicted by the usual asymptotic theory, and the empirical distribution of values can be approximatedTt

by a Gamma ( ) distribution appropriately.a ,bi i

not be normally distributed and the dispersion parameter f may
or may not be known. As indicated by the derivation given in
appendix B, our test statistic can be defined as

1 TT p (Y � m) DWSWD(Y � m) , (6)t F2 ˆ ˆtp0,fpf,gpg

where , , is the maximum-likelihood�1 ′ ˆm p g (Xg) D p diag{g (m )} gi

estimate of under , and is the REML type of estimate (suchˆg H f0

as the one that uses Pearson residuals) of f under . MatrixH0

, with . These quantities�1 ′ 2 �1W p diag{w } w p {fm v(m ) [g (m )] }i i i i i

are readily available by fitting a standard generalized linear
model, . We derive in appendix B that also followsg(m) p Xg Tt

approximately the weighted x2 distribution , wherec 2� l xi 1,iip1

( ) is the nonzero eigenvalues of matrix…l � l � � l 1 0 c � L1 2 c

. We note that the conclusions given in the pre-�1/2 �1/2W P SP W /20 0

vious section are a special case of the results given here. For nor-
mally distributed traits, , and , which equals�1 �1D p I W p V f I
under . Hence, equation (6) reduces to equation (5), and theH0

matrix reduces to�1/2 �1/2W P SP W /2 QSQ/ (2f) .0 0

Gamma approximation of the distribution of test statistic .—GivenTt

the fact that follows a weighted x2 distribution, one can obtainTt

the significance threshold at level a from simulation. How-T(a)

ever, such a task may not be trivial when a is small. As an al-
ternative, we introduce a Gamma approximation of the dis-
tribution of . Empirical evidence indicates that the eigenvaluesTt

of the matrix are dominated by the�1/2 �1/2…l ,l , ,l W P SP W /21 2 c 0 0

first few ones and decay rapidly to 0 (fig. 1). Following the work
of Zhang and Lin,22 we use the Satterthwaite method to approx-
imate the null distribution of by a Gamma distribution withTt

parameters . Let and denote the mean and variance of(a,b) E V
, respectively. We match the mean and the variance of theTt

Gamma distribution and those of the test statistic by setting
and , and we get and . We can2 2ab p E ab p V a p E /V b p V/E

then obtain or calculate the P value of the test statistic fromT(a)

the distribution of Gamma . The mean, , and variance, ,(a,b) E V
of can be calculated (appendixes A and B) byTt

1Êp tr(P S)02
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Table 3. Power for Quantitative Traits When the Disease
SNP Is Tagged

Haplotype
Diversity
and Allele
Frequency q

a p .05 a p .01

VC-Score
Test

Fixed-Effect
Test

VC-Score
Test

Fixed-Effect
Test

High:
q p .1 .889a .849 .701a .658
q p .3 .952a .714 .846a .473
q p .5 .965a .808 .884a .587

Moderate:
q p .1 .912a .860 .759a .704
q p .3 .987a .853 .954a .668
q p .5 .983a .877 .951a .689

Low:
q p .1 .950a .924 .845a .790
q p .3 .994a .957 .977a .869
q p .5 .994a .909 .979a .766

NOTE.—The results are based on 1,000 replications.
a Cases for which the power of one method is significantly higher than

that of the competing method at a nominal level of 0.05 by use of
McNemar’s test.

Table 4. Power for Quantitative Traits When the Disease
SNP Is Not Tagged

Haplotype
Diversity
and Allele
Frequency q

a p .05 a p .01

VC-Score
Test

Fixed-Effect
Test

VC-Score
Test

Fixed-Effect
Test

High:
q p .1 .470 .563a .248 .347a

q p .3 .140 .282a .039 .131a

q p .5 .595 .588 .341 .342
Moderate:

q p .1 .309 .599a .144 .364a

q p .3 .789a .613 .581a .389
q p .5 .959a .874 .860a .708

Low:
q p .1 .558 .797a .334 .588a

q p .3 .559a .447 .294a .253
q p .5 .484 .550a .247 .293a

NOTE.—The results are based on 1,000 replications.
a Cases for which the power of one method is significantly higher than

that of the competing method at a nominal level of 0.05 by use of
McNemar’s test.

and

2ˆ ˆ ˆ ˆVp I � I /I ,tt tf ff

where

T �1 TP p W � WX(X WX) X WF ,0 ˆ ˆtp0,fpf,gpg

1
Î p tr(P SP S) ,tt 0 02

1 1
�1Î p tr(P SP W ) p tr(P S) ,tf 0 0 0ˆ ˆ2f 2f

and

1 n � K
�1Î p tr(P W ) p .ff 02 2ˆ ˆ2f 2f

Phased haplotype data versus unphased genotype data.—Although
we have described our test, assuming that the haplotype infor-
mation H is observed, the phase information can be not crucial.
From equations (5) and (6), we see that the haplotype information
appears in only through , whose ( ) element, de-TT S p HR H i,jt b

noted by , can be rewritten asSij

T ( )S p H R H p H H # s h,k .�ij i b j i,h j,k
h,k

The right-hand side of the equation states that is simply theSij

similarity score between the haplotype pair of person i and that
of person j measured by metric . As a result, by choosings (h,k)
those metrics that do not require phase information, we can cal-
culate without resorting to the phased data. One choice is toS
set as the proportion of matching alleles between two hap-s(h,k)
lotypes, h and k. As demonstrated by Tzeng et al.11 and Schaid,14

such is equivalent to the proportion of matching alleles be-Sij

tween the genotypes of individual i and individual j and hence
can be calculated directly from genotypes with unknown phase.

Simulation Studies

We conduct simulation studies to examine the performance of
the proposed score test. In the simulation, we generated covari-
ates , haplotypes , and trait values , given and , forX H Y X Hi i i i i

each individual. The covariate is drawn from a standard normalXi

distribution, and the haplotype is generated using a techniqueHi

similar to those reported by Roeder et al.23 and Tzeng et al.8 Spe-
cifically, we simulated 100 haplotypes under the coalescent mod-
el,24 with an effective population size of , a scaled mutation410
rate of per bp, and a scaled recombination rate of�45.6 # 10
∼ per bp for the cold spots and a rate 45 times greater�36 # 10
for the hotspots. These parameters are chosen to roughly match
the genes observed in the SeattleSNP database. We discarded SNPs
with minor-allele frequencies !0.05. The hypothetical disease lo-
cus is selected on the basis of a predetermined minor-allele fre-
quency, q, and the diversity of haplotypes flanking the SNP. In
the simulation, we considered , 0.3, and 0.5 and haplo-q p 0.1
type-diversity levels of high (11–16 distinct haplotypes), mod-
erate (9–11 distinct haplotypes), and low (6–9 distinct haplo-
types). We set a haplotype region to be a segment of five adjacent
SNPs, including the two SNPs on the left and the three SNPs on
the right of the disease locus. Given that the disease SNP is ex-
cluded, we also considered whether the disease SNP is “tagged”
or “not tagged” by the surrounding five SNPs under each scenario.
We defined that the disease SNP is “tagged” if there is at least
one SNP whose with the disease SNP is 10.7, and it is “not2R
tagged” otherwise. We then randomly sampled with replacement
of 2 haplotypes from the 100 haplotypes to form an individual.
The simulated haplotype data were then converted into unphased
genotype data.

We next generated the trait values on the basis of and theY Xi i

genotypes at the disease locus. We determined the trait value of
individual i according to and the number of disease allelesXi

( ), using an additive-effect model. In the simulation study, weGi

considered both quantitative traits and binary traits and adopted
the same trait-generating scheme as did Lake et al.25 and Tzeng
et al.8 For quantitative traits, we used a random-sampling scheme
and generated 200 trait values from the normal conditional dis-
tribution of with mean and varianceY g � g # X � (G � 1)i 0 1 i i



932 The American Journal of Human Genetics Volume 81 November 2007 www.ajhg.org

Table 5. Power for Binary Traits When the Disease SNP
Is Tagged

Haplotype
Diversity
and Allele
Frequency q

a p .05 a p .01

VC-Score
Test

Fixed-Effect
Test

VC-Score
Test

Fixed-Effect
Test

High:
q p .1 .372a .274 .162a .102
q p .3 .565a .298 .359a .102
q p .5 .573a .327 .364a .129

Moderate:
q p .1 .462a .279 .226a .110
q p .3 .647a .366 .473a .167
q p .5 .584a .298 .375a .098

Low:
q p .1 .457a .348 .250a .134
q p .3 .753a .540 .542a .282
q p .5 .717a .377 .505a .179

NOTE.—The results are based on 1,000 replications.
a Cases for which the power of one method is significantly higher than

that of the competing method at a nominal level of 0.05 by use of
McNemar’s test.

Table 6. Power for Binary Traits When the Disease SNP
Is Not Tagged

Haplotype
Diversity
and Allele
Frequency q

a p .05 a p .01

VC-Score
Test

Fixed-Effect
Test

VC-Score
Test

Fixed-Effect
Test

High:
q p .1 .209 .218 .077 .075
q p .3 .094 .135a .024 .035
q p .5 .187 .183 .052 .055

Moderate:
q p .1 .128 .190a .044 .052
q p .3 .389a .255 .200a .087
q p .5 .482a .326 .266a .134

Low:
q p .1 .209 .249a .095 .112
q p .3 .246 .228 .097a .076
q p .5 .213 .238a .080 .087

NOTE.—The results are based on 1,000 replications.
a Cases for which the power of one method is significantly higher than

that of the competing method at a nominal level of 0.05 by use of
McNemar’s test.

. We set the heritability ( ) at 0.1 and2 2 22q (1 � q) # (1 � h ) /h h
. For binary traits, we used a case-control samplingg p g p 10 1

scheme and generated trait values of 0 or 1, using the penetrance
function . We set thelogitP(Y p 1 dG ,X ) p g � g # X � v # Gi i 0 1 i i

odds ratio (OR) ( ) at 2.0 and set the disease prevalence at 0.01ve
by letting and . We repeated the process untilg p �4.5 g p 00 1

we collected 100 cases and 100 controls.
We analyzed these simulated data to evaluate the power per-

formance of the VC-score method. To compare, we also con-
ducted haplotype analyses, using the fixed-effect method and, in
addition, the VC method via regular LRT (VC-LRT) under some
scenarios. These analyses were performed assuming unknown
phases. For fixed-effect analysis, we used the haplotype-score test
of Schaid et al.,26 as implemented in the R function ”haplo.score,”
and determined the P values by using the asymptotic x2 distri-
bution. The P values of our VC-score method were obtained from
the approximated Gamma distribution, and the P values of the
VC-LRT method were obtained from 50:50 mixtures of and2x0

.2x1

Data Application

We considered the data set from the genetic association study of
ALS conducted by Schymick et al.17 The ALS data set consists of
276 patients with sporadic ALS and 271 neurologically normal
control subjects27 and contains their genotypes at the 550K SNPs
across the genome in the Illumina chip assays. The original ge-
notyping was performed in the laboratory of Drs. Singleton and
Hardy at National Institute of Aging. The genotype data have
been made publicly available in the SNP Database at the National
Institute of Neurological Disorders and Stroke (NINDS) Human
Genetics DNA and Cell Line Repository. Schymick et al.17 per-
formed a genomewide association analysis and reported 34 SNPs
that have P values !.0001 on the basis of the single-SNP genotypic
test with 2 df. They used the Bonferroni correction to adjust for
multiple testing, and the threshold of significance at the nominal
level of 0.05 is . Although none of the 34 SNPs was�89.1 # 10
significant after the Bonferroni correction, the most significant
SNP (rs4363506) lay in close proximity to one of the actin cy-

toskeleton genes (the dedicator of cytokinesis 1 gene [DOCK1
{MIM 601403}]) that are increasingly recognized as playing an
important role in motorneuron disease. To assess the performance
of our method, we applied the proposed VC-score method to part
of this data set. We focused our analysis on chromosome 10,
where the most significant SNP is located. We used the results
reported by Schymick et al.17 as a benchmark to evaluate our
findings.

Results
Simulation Studies

In the comparison of our VC-score method with the
fixed-effect method, we reported the results for quanti-
tative traits and binary traits under 18 scenarios (3 val-
ues of allele frequency # 3 levels of haplotype diversity
# 2 different tagging statuses of the disease SNP). Type I
error rates were calculated on the basis of 2,000 replica-
tions, and power was calculated on the basis of 1,000
replications.

We listed the results of type I error rates of the VC-score
test in table 1 for quantitative traits and in table 2 for
binary traits. The values are around the nominal levels of

and , indicating that the Gamma dis-a p 0.05 a p 0.01
tribution approximates the null distribution of ade-Tt

quately. To ensure this conclusion, we also examined the
null distribution of the test statistics; the results are dis-
played in figure 2. The left panels of figure 2 show the two
quantile plots (hereafter, “QQ-plots”) that compared the
quantiles of the standardized from the null distributionTt

with the quantiles of the standard normal distribution.
The upper panels are for quantitative traits, and the lower
panels are for binary traits. In both cases, it is apparent
that standardized does not have a standard normalTt

distribution, following Lin’s21 asymptotic result. We then
draw the QQ-plots of against the Gamma distributionTt

(fig. 2, right panels). In the simulation, each replication i
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Table 7. Comparison of the Fixed-Effect Test, VC-Score Test, and VC-LRT

Trait Type, Effect Size,
and Parameter

a p .05 a p .01

Fixed-Effect
Test

VC-Score
Test

VC-
LRT

Fixed-Effect
Test

VC-Score
Test

VC-
LRT

Quantitative:
Powera at 2h p .00 .047 .048 .001 .015 .011 .000
Type I errorb at 2h p .05 .696 .724 .255 .384 .488 .194
Type I errorb at 2h p .10 .964 .978 .722 .880 .914 .722

Binary:
Powera at OR p 1.0 .075 .051 … .028 .015 …
Type I errorb at OR p 2.0 .226 .314 … .112 .138 …
Type I errorb at OR p 2.5 .418 .534 … .218 .310 …

NOTE.—Simulations assume a high haplotype diversity, a disease-allele frequency of 0.1, and a sample of 200 individuals
obtained from random sampling.

a Power calculated on the basis of 500 replications.
b Type I error rates calculated on the basis of 1,000 replications.

generated a that follows approximately a Gamma dis-Tt,i

tribution with a unique shape parameter, , and a uniqueai

scale parameter, . To create a QQ-plot against thesebi

nonidentical Gamma variables, we first created a scaled
that follows Gamma . Then, we used aT p T /b (a ,1)t,i t,i i i

single shape parameter of to obtain the the-ā p mean(a )i
oretical quantiles. Although use of a single shape param-
eter can cause some deviation in the QQ-plot (such as
what can be observed in the right section of the graph),
overall we see that the data points agree with the 45� line,
indicating that the Gamma approximation works reason-
ably well.

The results of power comparison are displayed in ta-
bles 3 and 4 for quantitative traits and in tables 5 and
6 for binary traits. We highlighted those cases in which
the power gain is significant at a 0.05 level by use of
McNemar’s test. We found that the correlation between
the disease SNP and its nearby SNPs plays a key role in
predicting the performance of the VC-score test com-
pared with the fixed-effect test. When the disease SNP was
tagged by at least one of surrounding SNPs, we observed
a systemic power improvement of the VC-score method
over the fixed-effect method. This is consistent for both
trait types across all scenarios (tables 3 and 5). If none of
the adjacent SNPs was highly correlated (i.e., ) with2R 1 0.7
the unobserved disease SNP, we saw a power drop com-
pared with that seen for the tagged SNPs. In these cases,
the fixed-effect method tends to retain a higher power
than that of the VC-score method, although the pattern
is not universal (tables 4 and 6).

We also examined the performance of the VC-score test
by varying the strength of genetic effects. We set the her-
itability at 0.00, 0.05, and 0.10 for quantitative traits2h
and set the OR at 1.0, 2.0, and 2.5 for binary traits. This
simulation considered the scenario of high haplotype di-
versity, a tagged disease SNP, and an allele frequency of
0.1 and used a sample size of 200 individuals generated
from random sampling for both trait types. The power is
calculated on the basis of 500 replications, and the type
I error rate (i.e., for and ) is calculated on2h p 0 OR p 1

the basis of 1,000 replications. As a quick verification, we
see from table 7 that the power of the VC-score method
increases as the genetic effect becomes stronger.

As a comparison, we also conducted the fixed-effect
analysis and the VC analysis with the regular LRT. We were
unable to obtain the result of the VC-LRT for binary traits
because of computational limitations, since one has to
calculate a c-dimensional (c p the number of the nonzero
eigenvalues) numerical integration to obtain the LRT sta-
tistics. Table 7 shows that, as expected, the VC-LRT pro-
duces the lowest power among the three methods. The
analysis of type I error rate helps to explain the low pow-
er of the VC-LRT; the size determined from the regular
50:50 mixture of and is extremely small, and the2 2x x0 1

overconservative threshold obtained from the x2 mixture
leads to a loss of power. When compared with the fixed-
effect method, we noticed that the power loss of the VC-
LRT method in our simulation is more substantial than
seen in the results of Schaid.14 We think this is probably
because Schaid simulated data from a VC model, which
would favor the performance of a VC approach.

Analysis of the ALS Data Set

Using unphased genotype data from the ALS study, we
replicated the single-SNP genotypic test of Schymick et
al.17 and performed two haplotype association analyses,
one with the fixed-effect method and the other with the
proposed VC-score method. There are a total of 28,818
SNPs genotyped on chromosome 10, and we removed the
26,258th SNP because of its ambiguous marker informa-
tion. Following the same haplotype definition as that in
the work of Schymick et al.,17 we also defined haplotypes
by using a sliding window of three SNPs in the haplotype
analyses.

The results from the VC-score method showed that
the most significant association signal, with a P value of

, is near rs4363506. The P values are presented�71.2 # 10
in figure 3, with the location of rs4363506 indicated by
the arrows. The two adjacent windows around the most
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Figure 3. P values from the ALS data analysis around the most promising SNP reported by Schymick et al.17 (i.e., SNP rs4363506,
with location indicated by the arrows). The P values are presented on the scale of negative logarithm of base 10. A, P values of the
three-SNP haplotype test by use of the VC-score method (solid line) and P values of a single-SNP genotypic test (dotted dashed line).
B, P values of the three-SNP haplotype test by use of the VC-score method (solid line) and P values of the three-SNP haplotype test
by use of the fixed-effect method (dashed line). C, P values of the four-SNP haplotype test by use of the VC-score method (solid line)
and P values of the four-SNP haplotype test by use of the fixed-effect method (dashed line).

significant signal also have similar P values: and�71.3 # 10
. These locations agree with the findings of�72.7 # 10

Schymick et al.,17 who reported that rs4363506 has a P
value of for the genotypic test and a P value of�76.8 # 10

for the three-marker haplotype test. Although�64.8 # 10
our P values appeared smaller, they were not significantly
different from the results of the single-SNP analyses and
were not significant after Bonferroni correction with the
threshold of . We also compared the VC-score�89.1 # 10
results with those of the fixed-effect method (fig. 3B). The
fixed-effect method also indicated a peak signal around
rs4363506, with the peak P value ( ) slightly�64.9 # 10
larger than those of the VC-score test and the single-SNP
test. In general, we observed that analyses at the haplotype

level reduced the noisy association signals of single SNPs.
Although the clearer association pattern of haplotypic
analyses came with the cost of extra degrees of freedom
used in multimarker variations, we see that the VC-score
haplotype test achieved a level of significance that is com-
parable to that of single-SNP analyses.

To ensure that the results are not sensitive to the defi-
nition of the haplotypes, we repeated our analysis with
window sizes of three, four, and five SNPs. The P values
for a window size of four SNPs for fixed-effect and VC-
score methods are shown in figure 3C, in which the P
value curves retain a similar pattern to the P value curves
in the three-SNP analysis (fig. 3B). Indeed, the P value
curves of various window sizes for the same method are
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similar (data not shown), except that larger window sizes
led to a more smoothing effect on the P values across SNPs.
With window sizes of four and five SNPs, the P values at
the windows containing rs4363506 are and�88.3 # 10

, respectively; both are significant at the thresh-�87.7 # 10
old determined by the Bonferroni correction. Judging by
the criteria of locating the signal around rs4363506 and
producing reasonable P values, we think that the VC-score
method performed competitively with the standard anal-
yses of these data.

Discussion

The VC approaches have been considered as one common
strategy to reduce the degrees of freedom required in hap-
lotype association analyses. However, it is noticed that
direct application of the VC-LRT to haplotype association
often fails to increase power. In this article, we reported
possible reasons that contribute to this phenomenon,
which include that (a) the LRT statistic has a nontypical
limiting distribution in a haplotype random-effect model
and (b) none of the surrounding SNPs is highly correlated
with the unobserved disease SNP. Although the latter rea-
son naturally limits the performance of the type of VC
approaches discussed in this article, the former can be
overcome. In essence, our work tackles this limiting-dis-
tribution problem; we introduced a VC-score test based
on the REML or the marginal likelihood function of the
VC under the GLMM. We showed that the test statistic
follows a weighted x2 distribution and provided a Gamma
approximation. We demonstrated the validity of the pro-
posed method through simulation. Constructed under the
GLMM framework, our VC method can be applied to a
broad class of data, allowing for traits of various types,
different choices of correlation structure, and a flexible
range of model assumptions. Finally, by choosing suitable
similarity metrics, the proposed method can be directly
applied to unphased genotypic data.

We note that the LRT statistic in the VC haplotype
model does not converge to the distribution derived from
the typical asymptotic theory that assumes independent
clusters. As a result, use of the conventional limiting dis-
tribution could lead to an overconservative testing result.
Crainiceanu and Ruppert16 reported similar findings and
provided a practical procedure to find the distribution of
the LRT statistic for continuous Y variables. However, we
still recommend the score test over the LRT, for several
reasons. First, the correct LRT procedure of Crainiceanu
and Ruppert16 is applicable only to continuous traits. Sec-
ond, the LRT is generally a more difficult test to implement
under the GLMM framework. For example, with binary
traits, it is almost impractical to obtain the exact maxi-
mum-likelihood estimates of the VC and, hence, the LRT
statistic. On the contrary, our score test is applicable to
a wide-ranging class of models, and it requires only the
estimates under that can be easily obtained from stan-H0

dard statistical software. The broad coverage and the fast

and easy implementation of the score test makes the VC
strategy an effective tool for haplotype analysis, even in
modern genomewide association studies. We have imple-
mented the VC-score test in R and have distributed the R
code at our Authors’ Web site.

An additional factor that would influence the power
performance is the LD pattern between the observed
SNPs and the unobserved disease SNP. Our power analysis
showed that, if at least one marker is in high LD with the
disease SNP (i.e., ), the VC-score method performs2R 1 0.7
better than the fixed-effect method. If all markers are in
low LD with the disease SNP, both methods suffer from
power loss. This is understandable because low correlation
indicates lack of information from neighboring SNPs to
make the correct inference. However, we noticed that the
VC-score test appears to have a larger drop in power. The
VC method is developed from an evolutionary point of
view, which implicitly assumes high correlation among
adjacent SNPs with the disease locus and uses the corre-
lation to reduce the degrees of freedom. On the other
hand, the fixed-effect approach does not rely on this as-
sumption. We conjecture that this is the explanation for
the observation of different degrees of power loss under
the “untagged” scenarios, as well as for the observation
of the power gain of the VC method under the “tagged”
scenarios. We plan to continue exploring this aspect of
the problem.

In this work, we suggested the use of similarity metrics
that do not require phase information. For example, a
candidate is the metric that counts the number of match-
ing alleles between two haplotypes. Theoretically, metrics
that make use of the phase information should be more
powerful. A corresponding metric to our candidate that
incorporates phase information is one that counts the
number of longest consecutive matching alleles. Metrics
of this type are more likely to capture the identity-by-
descent sharing and to better reflect the results of the de-
cay of haplotype sharing. However, these metrics are not
robust to genotyping errors and recent market mutations,
which often limit their power in practice. Our previous
work found that phase-dependent and phase-independent
metrics have similar performance.11 In addition, the use
of phase-independent metrics bypasses the need to infer
the phase information, which is often achieved under un-
realistic assumptions. For example, the expectation-max-
imization algorithm is typically used to impute haplotype
phases, and it assumes that the population has common
haplotype frequencies and is in Hardy-Weinberg equilib-
rium (HWE). These assumptions tend to not hold with the
existence of population substructure; the haplotype fre-
quencies could vary across subpopulations, and the HWE
may hold only within the subpopulations but not for the
entire population. Consequently, the phases are not in-
ferred accurately—hence, the subsequent association in-
ference. Use of phase-independent measures does not rely
on imputing the haplotype information and, therefore,
avoids these issues naturally.
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Although we have introduced a Gamma approximation
of the distribution of the score test for the sake of sim-
plicity, we note that there exists alternative approaches
to estimate the distribution. One approach is to use a
three-moment approximation,28,29 as opposed to the two-
moment matching method described in this article. The
three-moment method uses the information of the non-
zero eigenvalues of the matrix �1/2 �1/2l ,…,l W P SP W /21 c 0 0

and approximates the a-level significance threshold asT(a)

, where , , andc′ ′ j ′ 3 2�k � (x � h ) # k /h k p � l h p k /k x1 a 2 j i 2 3 aip1

is the ath quantile of (i.e., a x2 distribution with df).2 ′x h′h

The P value of the test statistic is then the right-tailTt

portion of of the distribution. An-′ ′ 2�(T � k ) # h /k � h x ′t 1 2 h

other approach is to obtain directly the empirical distri-
bution of through simulation based on the fact thatTt

. To do so, find eigenvalues , andc 2T p � l x l ,…,lt i 1,i 1 cip1

generate c sets of random values from the distribution,2x1

each set with a certain sample size—say, 500,000. Then,
the weighted sums of these random values form the em-
pirical distribution of the VC-score statistics. The simplic-
ity of the simulation carries over to genomewide asso-
ciation studies, in which case, the sample size of the
simulated values has to be reasonably large with respect2x1

to the stringent genomewide significance level. Fortu-
nately, these simulated random values can be used re-2x1

peatedly in every haplotype region, and all that needs
to be recalculated is the nonzero eigenvalues of matrix

obtained in each region.�1/2 �1/2W P SP W /20 0

The VC-score method introduced here focuses on de-
tecting the haplotype main effect, but the framework can
be extended to consider interactions. For example, one
can incorporate terms for gene-environment and gene-
gene interactions in the model and can examine their
significance by testing the corresponding VC. We are ex-
ploring these ideas in an ongoing work. We also note that
the VC-score method has a direct connection to the strat-
egy of reducing the degrees of freedom in haplotype as-
sociation tests through haplotype sharing. The haplotype
information appears in the formula of the score statistic

as , and the elements of S record the level ofTT S p HR Ht b

haplotype similarity between two subjects by a certain
haplotype metric, . On the one hand, in the VCs(h,k)
methods, the selection of (and hence the similarity met-Rb

ric) largely emphasizes the evolutionary relationship of
haplotypes in history. On the other hand, in the haplo-
type-sharing approaches, we choose the similarity metric
to quantify the similarity level in the current population.
We believe that taking advantage of the implicit relation-
ship between the two methods can offer more insights
into both strategies. We plan to further investigate this
issue.
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Appendix A

Distribution and Moments of the VC-Score Statistic
for Normal Traits

From equation (5), we have for nor-T 2T p Y QSQY/ (2f )t

mal traits. Define vector , which follows a�Z p (Y � m) / f

standard multivariate normal distribution. We then can
rewrite asTt

cQSQT 2T p Z Z p l Z , (A1)�t i i2f ip1

where distribution. Equation (A1) holds as2 2 TZ ∼ x m Q pi 1

by the fact of Q, a projection matrix.0
When f is unknown, we replace f in our test statistic
with its REML estimate under , which yields the reg-T Ht 0

ular mean squared error for the linear regression model
:Y p Xg � e

TY QY
f̂ p .

n � K

Since, under , traits Y reduce to independent data,H :t p 00

the variance of will be negligible when the total samplef̂

size, n, is large. Therefore, the exact distribution of withTt

f replaced by can be approximated by the distributionf̂

of , where are the eigenvalues of , ifc 2ˆ ˆ ˆ� l x l QSQ/(2f)i i1 iip1

such ”exact” distribution is critically needed.
We can approximate the distribution of by a GammaTt

distribution by matching the first two moments. Follow-
ing the work of Harville,20 the mean, , and variance, ,E V
of areTt

1
( )Ep tr QS

2f

and

1
( )V{ I p tr QSQS .tt 22f

To take into account the fact that f is estimated, we
obtained the following result by Taylor expansion:

�1ˆ ( )T (f) ≈ T f �I I U ,t t tf ff f

where , , and2 2I p E(�T /�f) I p E[� � (t,f)/�f ] U ptf t ff REML f

. Hence, we can estimate the mean of by�� (t,f)/�f TREML t

ˆ ˆE{ E[T (f)] p E[T (f)] ≈ tr(QS)/(2f)t t
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and can estimate the variance of byTt

�1 �1ˆ ( ) ( )Vp Var [T (f)] ≈ Var [T f ]�I I Var U I It t tf ff f ff ft

2ˆ ˆ ˆ≈ I � I /I ,tt tf ff

where

1
Î p tr(QSQS) ,tt 2ˆ2f

1
Î p tr(QS) ,tf 2ˆ2f

and

1 n � K
Î p tr(Q) p .ff 2 2ˆ ˆ2f 2f

Appendix B

Derivation of the VC-Score Test for General Traits

Motivated by the nice properties of the REML or the
marginal log-likelihood function of the VC for a normal
trait, presented in equation (3), and the success of the
score test for testing a polynomial covariate effect in
semiparametric additive mixed models by use of mixed-
model representation,22 we take a similar approach for a
nonnormal trait, Y, such as a binary disease trait. Under
model specification (1), the marginal log-likelihood func-
tion of t and the possible dispersion parameter� (t,f;Y)M

f are given by

� (t,f;Y)Me p f(Y;g,t,f)dg�
p f(YFb;g,f)f(bFt)dbdg . (B1)� �

The marginal log-likelihood in (B1) usually involves a
high-dimensional and mathematically intractable inte-
gration. To overcome this problem, Zhang and Lin22 used
Laplace approximation to derive an approximate score sta-
tistic for testing on the basis of a similar marginalH :t p 00

log-likelihood function. For our model, their score statistic
(eq. [16] in the work of Zhang and Lin22) reduces to

1 TU ≈ (Y � m) DWSWD(Y � m){t 2

� tr(P S) F ,}0 ˆ ˆtp0,fpf,gpg

where is the mean of Y under ;�1m p g (Xg) H :t p 00

; , with ;′ �1 �1 ′ 2D p diag{g (m )} W p diag{w } w p fm v(m ){g (m )}i i i i i i

; is the maximum-likeli-T �1 T ˆP p W � WX(X WX) X W g0

hood estimate of under ; and is the REML type ofˆg H f0

estimate of f under .H0

Under , and are consistent estimates ofˆˆH :t p 0 g f g0

and f, respectively. Hence, there is not much variability
in the second term (relative to the first term) of whenUt

sample size n is large. Therefore, we can again use the first
term for testing :H :t p 00

1 TT { (Y � m) DWSWD(Y � m)F .t ˆ ˆtp0,fpf,gpg2

To derive the distribution of , first we show, throughTt

Taylor expansion, that, under ,H :t p 00

�1 �1ˆ ˆm̂ p g (Xg) ≈ m � D X(g � g)

and

T �1 Tˆ(g � g) ≈ (X WX) X WD(Y � m) .

Then, we have

T �1 Tˆ( ) ( ) ( )WD Y � m p WD � W X WX X WD Y � m[ ]

( )pP D Y � m .0

As a result,

1 1T Tˆ ˆ( ) ( ) ( ) ( )T p Y � m DWSWD Y � m ≈ Y � m DP SP D Y � mt 0 02 2

1 11 T � �˜ ˜p Y W P SP W Y ,2 20 02

where the ith element of is defined byỸ (Y �i

and where and are the true mean�m )/ Var (Y ) m Var (Y )i i i i

and variance, respectively, of under . The result in-Y Hi 0

dicates that has approximately the same distribution asTt

1 11 T � �˜ ˜Y W P SP W Y .2 20 02

Again, denote by ( ) the eigen-…l � l � � l 1 0 c � L1 2 c

values of , and denote by�1/2 �1/2W P SP W /2 u ,u ,…,u0 0 1 2 c

the corresponding orthonormal eigenvectors. Then, un-
der , will have approximately the same distributionH T0 t

as , where . Under the condition that eachc 2 T ˜� l Z Z p u Yj j j jjp1

is not dominated by a few elements, will be…u Z ,Z , ,Zj 1 2 c

approximately independent standard normal random var-
iables. So, has approximately the same distribution asTt

that of , which is similar to the case of normalc 2� lxj 1(i)jp1

traits.
We can approximate the distribution of by aTt

Gamma distribution by matching the first two mo-
ments, as was done in appendix A. The approximate
mean of is given by , and the ap-T Ep tr(P S)/2t 0

proximate variance by , where2ˆ ˆ ˆ ˆVp I � I /I I ptt tf ff tt

, , and�1 ˆ ˆˆtr(P SP S)/2 I p tr(P SP W )/(2f) p tr(P S)/(2f)0 0 tf 0 0 0

.�1 2 2ˆ ˆÎ p tr(P W )/(2f ) p (n � K)/(2f )ff 0
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Web Resources

The URLs for data presented herein are as follows:

Authors’ Web site, http://www4.stat.ncsu.edu/∼tzeng/Softwares/
Hap-VC/R/ (for R code for implementing the VC-score test)

NINDS Human Genetics DNA and Cell Line Repository, http://
ccr.coriell.org/ninds/ (for the ALS study by Schymick et al.)

Online Mendelian Inheritance in Man (OMIM), http://www.ncbi
.nlm.nih.gov/Omim/ (for DOCK1)
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